Operations Research at Air Liquide

Presentation at ROADEF 2018: OR Practice
Lorient 23 February 2018
Outline

Introduction to Air Liquide and our Optimization activities

Real Time optimization Problem (Production)

Bulk Distribution Optimization project
 ○ Supply Chain Design Optimization Suite
 ○ Inventory Routing Problem

Conclusions

Useful Anecdotes
Introduction to Air Liquide and our Optimization activities
2016 key figures
(Following the acquisition of Airgas on May 23rd, 2016)

~65,000
EMPLOYEES (1)

Present in
80 COUNTRIES

Revenue
€ 18.1 BILLIONS (2)

Net profit
€ 1.844 BILLIONS

More than
3 MILLION CUSTOMERS & PATIENTS

(1) As of December 31st, 2016.
(2) Excluding Welding and Diving, restated as discontinued operations.
Major trends are shaping our markets

- ENERGY AND ENVIRONMENTAL TRANSITION
- CHANGES IN HEALTHCARE
- DIGITIZATION
Operations Research applications @ Air Liquide

> Supply Chain(s) Optimization(s)@Air Liquide

- Real Time Production Optimizer/Gas & Liquid Production planning
- Inventory Routing Problem www.challenge.roadef.org
- Tactical sourcing and asset management
- Cylinder Supply chain Dispatching
Pipelines ... and their optimization

For Real Time Optimization (RTO), R&D introduced which our production operations now use as a common optimization platform worldwide

Internal Advanced Process Control (APC) and Optimization conferences held every 2-3 years
Measuring Energy & Environmental Impacts
Significant Scale ... and opportunities for Operations Research & Analytics

<table>
<thead>
<tr>
<th>Energy and efficiency indicators for the Group as a whole</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Annual electricity consumption (in GWh)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>2012</td>
</tr>
<tr>
<td>27,578</td>
</tr>
<tr>
<td>Annual thermal energy consumption (in LHV terajoules)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>2012</td>
</tr>
<tr>
<td>229,177</td>
</tr>
<tr>
<td>Evolution of energy consumption per m³ of air gas produced</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>98.8</td>
</tr>
<tr>
<td>Evolution of energy consumption per m³ of hydrogen produced</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>98.4</td>
</tr>
</tbody>
</table>

● **Significant Scope:** In 2014, AL* consumed **30,341 GWh** of electricity, mostly in our air separation units (ASUs)
● **In Perspective:** In 2014, the US Energy Information Agency (EIA) reported **worldwide electricity production was 22,657 TWh**

(*AL = Air Liquide)
Measuring Energy & Environmental Impacts

Significant Scale … and opportunities for Operations Research & Analytics

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Kilometers traveled by all vehicles delivering gas in liquid or cylinder form (in millions of km)</td>
<td>428</td>
<td>420</td>
<td>428</td>
<td>426</td>
<td>540* (1)</td>
</tr>
<tr>
<td>Estimate of CO₂ emissions generated by these vehicles in the Industrial Merchant activity (in thousands of tons)</td>
<td>471</td>
<td>462</td>
<td>471</td>
<td>468</td>
<td>600* (1)</td>
</tr>
<tr>
<td>Evolution of the distance traveled per ton of liquid industrial gas delivered (oxygen, nitrogen, argon, carbon dioxide) (1) (truck delivery)</td>
<td>97.8</td>
<td>95.3</td>
<td>94.8</td>
<td>92.2</td>
<td>90.3* (1)</td>
</tr>
</tbody>
</table>

Clear Key Performance Indicators & Metrics

- **Significant Scope:** In 2016, AL* trucks traveled 540 million km to deliver cylinders & bulk liquid to customers worldwide**
- **Continued Efficiency Improvements:** In 2016: km per ton delivered reduced by 2% versus 2015 (and 9.7% versus 2007)
Real Time Production optimization
Hierarchical Pyramid: Process Control & Optimization (Production)

Level 4
Planning & Scheduling (global basis)

Level 3
Plant Optim.

Level 2b
Advanced Process Control

Level 2a
Regulatory Control Loops

Level 1
Sensors / Actuators Equipment

Real Time Optimization (RTO) [hr]

Model Predictive Control (MPC) [min]

PID Control [sec]

Connection to Enterprise Resource Planning (ERP) System
Real Time Optimization (RTO)

Problem to solve
Implement best setpoints and ramp the plant

Energy price

Actual process and pipeline values

Target and schedule setup

Customer demand

Predefined

Real Time Information

Process Model

RealTime Optimization

Optimal setpoints

Li, et al. (2011)
SIO Optim Digital Twin Concepts

The Core Engine is...

- Mathematical model generator using a modular approach for Air Separation Units
- Is developed on AIMMS, the group preferred optimization platform
- Users configure applications that rely on the same mathematical model

- RTO
- Data Reconciliation
- Energy Nomination
- Liquid Scheduling
- Maintenance planning
- Budget

V1

V2
Bulk Distribution Optimization project

Supply Chain Design Optimization Suite,

Inventory Routing Problem
Transition to Vendor Managed Inventory (VMI)
Bulk (Liquefied) Gases delivered to customers via tractor-trailer

From **Customer-Managed Inventory (CMI)**
- Customer is responsible for monitoring & managing inventory
- Customer “calls-in” orders to AL
- Key decisions imposed on AL:
 - When to deliver?
 - How much to deliver?

To **Vendor-Managed Inventory (VMI)**
- AL is responsible for monitoring & managing inventory *(a service)*
- AL makes a full set of coordinated decisions
 - Flexibility
 - Efficiency
 - Robustness

Requires **Evolution**
- Convince customer to change to a VMI relationship
- Remote Telemetry
- Customer Demand Forecasting
- Inventory Routing Optimization

Requires Evolution
Hierarchical Pyramid: Distribution Optimization

- **Level 4**: Global Planning & Scheduling (production/distribution)
- **Level 3b**: Optimization (Assets)
- **Level 3a**: Optimization (Dispatch Decisions)
- **Level 2**: Forecasting
- **Level 1c**: Supervision
- **Level 1b**: Remote Telemetry Units
- **Level 1a**: Sensors

Connection to Enterprise Resource Planning (ERP) System

3b: Supply Chain Design

3a: Distribution Routing (Operations)
From Supply Chain Design to Operation
Bulk (Liquid) Distribution in a Vendor-Managed Inventory (VMI) context

Optimization Sequence

- **Strategic**
 - Sourcing
 - Tank Allocation
 - assigning customers to product sources
 - sizing storage at customer sites for efficiency (and robustness)
- **Operational**
 - Fleet Sizing
 - tractors, trailers, and drivers
 - Inventory Routing
 - daily deliveries and exact routes

AL sponsored the 2016 ROADEF/EURO Challenge, providing realistic test cases among others.

Users Worldwide:
- Argentina
- Germany
- Brazil
- China
- France
- Japan
- China
- Mexico
- South Africa
- Spain
- Turkey
- USA
Overview of Supply Chain Design Optimization suite

Since 2009, AL has developed a suite of **decision support tools** for **optimization** of the **bulk supply chain design efficiency**.

Tank Allocation module answers: Which customers are opportunities for a **tank change** – and what **savings in distribution costs** should I estimate?

Sourcing module answers: How should I **allocate customer demand among various sources**?

Fleet Sizing module answers: What **vehicles & drivers** do I **allocate** to each **depot** for each period?

Developed by AL (R&D, Advanced IT, & World Business Line) in collaboration* with Virginia Tech and CELDi. Applying R&D expertise in **Operations Research & Software Development**.
Tank Allocation: Problem Overview

Optimizes **Net Present Value (NPV)** of Tank Change Investments & Distribution Costs

Simulates **Distribution Cost / Routing** to meet customer demands

Recommends **New Tank Allocation** including Refurbishment & Purchasing decisions

1. Loading cost at source
2. Unloading cost at customer
3. Distance cost for road delivery

Distribution Cost

1. Purchase cost
2. Refurbishment cost
3. Tank Removal cost
4. Tank Installation cost
5. Warehouse transportation cost

Investment
Method: assume constant demand

- **Academic Research to Address Clear Challenges**
- **Phase 1:** Cluster Customers and Generate Candidate Shifts
 - Sweep Algorithm
- **Phase 2:** Select Shifts and Allocate Tanks
 - Mixed Integer Linear Program (MILP)
Sustained Collaboration (2009-15)

- **Evolution of Collaboration with Virginia Tech**
 - **From:** delivering the full solver
 - **To:** developing new methodologies
 - Students: PhD, MS, undergraduates

- **Flexibility & Transparency**
 - Changes in Scope necessary
 - More Time / Budget required as challenges arise

- **Project Timeline**
 - v1.0 proof-of-concept
 - v1.2 deployed, **delivering value** (constant customer demand)
 - v2.0 development (model relaxation, time-varying demand)
 - v2.0 deployed as a **success**, project closed
Overview of Bulk Inventory Routing Optimization

The **goal** is to optimize the bulk distribution / transportation planning over the long term

- Minimizing the **logistic costs**
- Providing a **high level of product availability** for our customers
 - Avoid product shortage (run-out) at the customer tank
 - Satisfaction of orders of call-in customers

- Collaborations with: Innovation24 : 2008-2013
- Paris 13 University : 2013-14 Post doc on exact methods

Applying R&D expertise in **Operations Research & Software Development**

AL sponsored the 2016 ROADEF/EURO Challenge, providing realistic test cases
Conclusion & Useful Anecdotes
Keys to Success in Academic Collaborations

WIN WIN

- All are fortunate to collaborate
- Delivers Value for all
 - $ / € for industry
 - publications/thesis for university researchers
- Good Relationship = Good Influence

- Challenging, **Valuable**, Pre-competitive Project
- Flexibility & Transparency of Academic Partner
- Exploratory Focus over the Longer-Term
Manage Reasonable Expectations

- **Outline a clear path to achieve vision**
 - Identify potential successes *(victories)* along the way
- **Don’t let the perfect be the enemy of the good**
 - 1st goal: Perform better than before
 - First Do Better, eventually Do Best (if possible)
- **Set reasonable expectations**
 - What appears simple and straightforward often is not so
 - Make sure stakeholders *appreciate* the level of the challenge
 - If end-user can do better / improve upon solution, train them to expect this and encourage them to try
Interacting with Stakeholders

- **Proactively Identify and Involve Potential Stakeholders**
 - **Management** [business value, $/€, resources]
 - **Subject Matter Experts** [problem definition, validation]
 - **Operations** [end-user of tool or its results]

- **Genuinely Solicit Stakeholder Feedback & Respond with Empathy**
 - If you **solicit** feedback, you should be genuine and **consider it**
 - Respond with necessary detail, including rationale
 - Respond with empathy, understand stakeholder’s perspective

- **Identify & Address Underlying Question, Concern, Request or Need**
Maintain Reliable Data

- Reliability of Data → Reliability of Tool
 - Requires clear **responsibility** and **accountability**
- **Industrial IT platform technology alone is insufficient**
- Particularly true for “open-loop” decision support tools
 - Regular, specific **end-user action required** to implement solution
 - Early stage: rely on end-user to collect data
 - Increased reliance on ERP (vs. pre-existing manual methods)
 - Generally infeasible for end-user to take responsibility for all data
Overcoming Skepticism and Resistance
Inspired by UPS TED talk by Jack Levis

“All truth passes through three stages …
● First, it is ridiculed
● Second, it is violently opposed
● Third, it is accepted as being self-evident”

Arthur Schopenhauer

“Essentially, all models are wrong, but some are useful”

George E. P. Box

Sometimes, resistance comes in the form of requests for more
For further information

Rodrigue FOKOUOP
rodrigue.fokouop-w@airliquide.com

encyclopedia.airliquide.com
airliquide.com
Open Innovation @Air Liquide

THIS DOCUMENT IS PUBLIC

Date
Name & function
R&D presentation